Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

نویسندگان

  • Ashutosh Pandey
  • Anshu Alok
  • Deepika Lakhwani
  • Jagdeep Singh
  • Mehar H. Asif
  • Prabodh K. Trivedi
چکیده

Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses

ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana (Musa acuminata L.). In this study, eight MaAGPase genes have been identified genome-wide in M. acuminata, which could be clustered into the large (APL) and small (A...

متن کامل

Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP ge...

متن کامل

Regulation of Banana Phytoene Synthase (MaPSY) Expression, Characterization and Their Modulation under Various Abiotic Stress Conditions

Phytoene synthase (PSY) is a key regulatory enzyme of carotenoid biosynthesis pathway in plants. The present study examines the role of PSY in carotenogenesis and stress management in banana. Germplasm screening of 10 Indian cultivars showed that Nendran (3011.94 μg/100 g dry weight) and Rasthali (105.35 μg/100 g dry weight) contained the highest and lowest amounts of β-carotene, respectively i...

متن کامل

Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis

Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinit...

متن کامل

Transcriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.

Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016